Руководства, Инструкции, Бланки

руководство по проектированию железобетонных конструкций с жесткой img-1

руководство по проектированию железобетонных конструкций с жесткой

Рейтинг: 5.0/5.0 (1872 проголосовавших)

Категория: Руководства

Описание

РУКОВОДСТВО ПО ПРОЕКТИРОВАНИЮ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ С ЖЕСТКОЙ АРМАТУРОЙ

Выдержка из документа: РУКОВОДСТВО ПО ПРОЕКТИРОВАНИЮ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ С ЖЕСТКОЙ АРМАТУРОЙ РУКОВОДСТВО ПО ПРОЕКТИРОВАНИЮ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ С ЖЕСТКОЙ АРМАТУРОЙ

1. ОСНОВНЫЕ ПОЛОЖЕНИЯ

3. РАСЧЕТ ПО ПРОЧНОСТИ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ С ЖЕСТКОЙ АРМАТУРОЙ

4. РАСЧЕТ ИЗГИБАЕМЫХ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ С ЖЕСТКОЙ АРМАТУРОЙ ПО ПРЕДЕЛЬНЫМ СОСТОЯНИЯМ ВТОРОЙ ГРУППЫ

5. КОНСТРУКТИВНЫЕ ТРЕБОВАНИЯ

Рекомендовано к изданию секцией НТС НИИЖБ.

Руководство содержит основные положения по проектированию железобетонных конструкций с жесткой арматурой. Приведены данные по материалам, применяемым в указанных конструкциях, рекомендации по расчету, конструктивные требования. Даны примеры расчета.

Руководство предназначено для инженерно-технических работников проектных организаций.

ПРЕДИСЛОВИЕ

Руководство содержит рекомендации по проектированию железобетонных конструкций с жесткой арматурой из профильной и листовой стали классов С 38/23 и С 44/29 при проектных марках бетона по прочности на сжатие М 200-500.

В Руководстве приведены основные положения по проектированию, применяемые марки бетона и стали, методы расчета по прочности изгибаемых и сжатых элементов, рекомендации для расчета по деформациям и раскрытию трещин изгибаемых элементов, конструктивные требования.

В Руководстве даны графики для расчета сжатых элементов с жесткой арматурой и примеры расчета, охватывающие наиболее типичные случаи, встречающиеся в практике проектирования.

Руководство разработано НИИЖБ Госстроя СССР (д-р техн. наук, проф. А.П. Васильев, кандидаты техн. наук Н.И. Катин, Н.А. Егоров) и ЦНИИПромзданий Госстроя СССР (инженеры Б.Ф. Васильев, И.К. Никитин, Л.Л. Лемыш, А.Г. Королькова).

Замечания и предложения по содержанию Руководства просьба направлять в НИИЖБ по адресу: 109389, Москва Ж-389, 2-я Институтская ул. д. 6.

Основные буквенные обозначения

УСИЛИЯ ОТ ВНЕШНИХ НАГРУЗОК В ПОПЕРЕЧНОМ СЕЛЕНИИ ЭЛЕМЕНТОВ

М - изгибающий момент;

N - продольная сила;

Q - поперечная сила.

Rпp - расчетное сопротивление бетона осевому сжатию для предельных состояний первой группы;

Rр и RрII - расчетные сопротивления бетона осевому растяжению соответственно для предельных состояний первой и второй групп;

Rа - расчетное сопротивление гибкой арматуры растяжению;

Rac - расчетное сопротивление гибкой арматуры сжатию;

Rax - расчетное сопротивление гибкой поперечной арматуры при расчете на поперечную силу;

Rаж - расчетное сопротивление жесткой арматуры растяжению, сжатию;

Eб - начальный модуль упругости бетона при сжатии и растяжении;

Eа - модуль упругости гибкой арматуры;

Eаж - модуль упругости жесткой арматуры.

b - ширина прямоугольного сечения, ширина ребра таврового сечения;

h - высота прямоугольного и таврового сечения;

- ширина полки таврового сечения в сжатой зоне;

- высота полки таврового сечения в сжатой зоне;

dс - толщина стенки профиля жесткой арматуры или сумма толщин стенок при нескольких профилях;

hcт - высота стенки жесткой арматуры;

х - высота сжатой зоны сечения;

F - площадь всего бетона в поперечном сечении элемента;

Fб - площадь сечения сжатой зоны бетона;

А - обозначение гибкой продольной арматуры:

а) при наличии сжатой и растянутой зоны, расположенной в зоне, растянутой от действия внешних усилий;

б) при полностью сжатом сечении, расположенной у менее сжатой стороны сечения;

А' - гибкая арматура:

а) при наличии сжатой и растянутой зоны, расположенная в зоне, сжатой от действия внешних усилий;

б) при полностью сжатом сечении - у более сжатой стороны сечения;

Fа и - площадь сечения арматуры соответственно А и А' ;

Fаж - площадь сечения жесткой арматуры;

- площади сечения жесткой арматуры, расположенной соответственно в растянутой и сжатой зоне;

- площади сечений полок профилей жесткой арматуры, расположенных соответственно в растянутой и сжатой зоне;

Wпл - пластический момент сопротивления жесткой арматуры равный Wпл = 2S. где S -статический момент половины сучения жесткой арматуры относительно геометрической оси;

для прокатных двутавров и швеллеров Wпл = 1,17W (W - момент сопротивления при упругой работе материала);

а и а' - расстояния от равнодействующей усилий в гибкой арматуре соответственно А и А' до ближайшего края сечения;

а1 и - расстояние от равнодействующей усилий в гибкой и жесткой арматуре, расположенных соответственно в растянутой и в сжатой зонах сечения до ближайшего края;

- расстояние от сжатой грани бетона до оси верхней полки жесткой арматуры;

h0 = h - а1 - рабочая высота сечения, равная расстоянию от сжатой грани бетона до равнодействующей усилий в растянутых жесткой и гибкой арматурах;

h' - расстояние от сжатой грани бетона до равнодействующей усилий в арматуре А ;

r - расстояние от сжатой грани бетона до центра тяжести жесткой арматуры;

rn - радиус инерции приведенного поперечного сечения элемента с учетом всей продольной арматуры;

l0 - расчетная длина элемента;

e0 - эксцентриситет продольного усилия относительно центра тяжести бетонного сечения или центра сжатия сечения (см. п. 3.24 настоящего Руководства);

е - расстояние от точки приложения продольной силы до равнодействующей усилий в арматуре A .

1. ОСНОВНЫЕ ПОЛОЖЕНИЯ

1.1. Настоящее Руководство распространяется на проектирование железобетонных конструкций с жесткой арматурой из профильной или листовой стали, защищенной бетоном.

1.2. При проектировании железобетонных конструкций с жесткой арматурой надлежит соблюдать требования главы СНиП II-21-75 «Бетонные и железобетонные конструкции», главы СНиП II-А.10-71 «Строительные конструкции и основания. Основные положения проектирования» и главы СНиП II-В.3-72 «Стальные конструкции. Нормы проектирования».

1.3. Расчет монолитных конструкций с жесткой арматурой рекомендуется производить для следующих стадий работы конструкций:

а) до приобретения монолитным бетоном кубиковой прочности 100 кгс/см 2 - как металлической конструкции на воздействие транспортных и монтажных нагрузок, веса монолитного бетона и других нагрузок, возникающих в процессе возведения; при расчете металлической изгибаемой конструкции расчетное сопротивление стали принимается с коэффициентом 0,9;

б) после приобретения монолитным бетоном проектной прочности - как железобетонной конструкции с жесткой арматурой на полную нагрузку.

На нагрузки, возникающие в процессе монтажа, при кубиковой прочности бетона более 100 кгс/см 2 конструкцию допускается рассчитывать как железобетонную.

1.4. В целях экономии металла сечение жесткой арматуры рекомендуется подбирать минимальным, за исключением случаев ограничения габарита железобетонных элементов, используя ее как стальную конструкцию только на усилия, возникающие в процессе возведения здания. Работу на полную эксплуатационную нагрузку рекомендуется обеспечивать соответствующим подбором железобетонного сечения с жесткой и добавочной гибкой арматурой.

2. МАТЕРИАЛЫ

2.1. При проектировании железобетонных конструкций с жесткой арматурой из профильной или листовой стали, защищенной бетоном, рекомендуется предусматривать тяжелый бетон проектных марок по прочности на сжатие М 200, М 250, М 300, М 350, М 400, М 450, М 500.

При соответствующем экспериментальном обосновании допускается предусматривать бетоны на пористых заполнителях проектных марок по прочности на сжатие не ниже М200.

Расчетные и нормативные сопротивления бетона следует принимать в соответствии с указаниями главы СНиП II-21-75.

2.2. Для жесткой арматуры следует применять прокатную углеродистую сталь обыкновенного качества класса С 38/23, марки Ст 3, группы В по ГОСТ 380-71 и прокатную низколегированную сталь класса С 46/33, марок 10Г2С1 и 14Г2 по ГОСТ 19281-73 и ГОСТ 19282-73.

В качестве жесткой арматуры можно применять профильную сталь или сварные элементы из листовой полосовой стали.

Расчетные сопротивления стали следует принимать в соответствии с указаниями главы СНиП II-В.3-72.

2.3. В качестве гибкой арматуры применяется арматура, отвечающая требованиям соответствующих Государственных стандартов и технических условий, следующих видов и классов:

стержневая горячекатаная арматура:

гладкая класса A-I;

периодического профиля классов A-II и A-III;

обыкновенная арматурная проволока:

гладкая класса B-I;

периодического профиля класса Вр-I.

Расчетные сопротивления арматурной стали следует принимать в соответствии с указаниями главы СНиП II-21-75.

3. РАСЧЕТ ПО ПРОЧНОСТИ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ С ЖЕСТКОЙ АРМАТУРОЙ

Другие статьи

Руководство по проектированию железобетонных конструкций с безбалочными перекрытиями (часть 1)

Содержание материала

Руководстве даны рекомендации по расчету и конструированию каркасов зданий с безбалочными перекрытиями.

Предназначено для инженерно технических работников проектных организаций, научных работников и студентов строительных вузов.

Настоящее Руководство содержит рекомендации по области применения конструкций с безбалочными перекрытиями в производственных зданиях, типам и параметрам конструкций, а также основные положения по расчету и конструированию; в Руководстве особое внимание уделено сборным конструкциям как наиболее распространенным в строительстве.

При составлении Руководства учтен опыт проектирования и строительства производственных зданий, а также результаты экспериментальных исследований безбалочных конструкций.

Руководство не распространяется на конструкции зданий, возводимых на просадочных грунтах и горных выработках, в районах с сейсмичностью свыше 6 баллов и в районах Крайнего Севера, а также на конструкции зданий, возводимых методом подъема перекрытий.

Руководство разработано Центральной лабораторией теории железобетона НИИЖБа (доктора техн. наук, проф. А. А. Гвоздев и С. М. Крылов, канд. техн. наук Л. Н. Зайцев) и отделом железобетонных конструкций ЦНИИПромздаиий (кандидаты техн. наук М. Г. Костюковский и А. Н. Королев, инж. Т. В. Мурашова) при участии лаборатории железобетонных конструкций Уральского Промстройниипроекта (кандидаты техн. наук А. Я. Эпп, В. В. Чижевский).

Замечания просьба направлять по адресу: 109389, Москва, Ж-389, 2-я Институтская ул. д. 6, НИИЖБ и 127238, Москва, И-238, Дмитровское шоссе, д. 46, ЦНИИПромзданий.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Настоящее Руководство распространяется на проектирование каркасов зданий с безбалочными конструкциями в виде плоских железобетонных перекрытий, образованных гладкими плитами, которые жестко сопрягаются с поддерживающими их колоннами посредством местных утолщений - капителей.

Рассматриваются конструкции зданий с квадратной и прямоугольной сетками колони при отношении большего пролета к меньшему до 3 /2 и отношении величин пролетов одного направления каркаса не более 4 /3 .

1.2. Целесообразность применения безбалочных конструкций в каждом конкретном случае устанавливается на основании технико-экономического анализа с учетом условий эксплуатации конструкций, а в зданиях с сетками колонн более 6?6 м и с учетом повышения эффективности использования производственных площадей.

Применение безбалочных конструкций по п. 1.1. целесообразно:

  • при строительстве зданий, в которых по условиям размещаемых производств, эксплуатационным и другим требованиям необходимы гладкие потолки и беспустотные перекрытия, например в производственных зданиях мясокомбинатов, молокозаводов, рыбоперерабатывающих заводов, и холодильниках и т. п.;
  • в многоэтажных зданиях с сеткой колонн 6?6 м и большими (? 1000 кгс/м 2 ) временными нагрузками на перекрытиях.

Безбалочные конструкции предпочтительны также в зданиях с агрессивными средами.

1.3. Рекомендуется применять, преимущественно типовые или одобренные Госстроем СССР для применения в строительстве сборные безбалочные конструкции заводского изготовления.

При соответствующем обосновании могут применяться монолитные безбалочные конструкции.

1.4. По наружному контуру безбалочные перекрытия могут:

  • свободно выступать за крайний ряд колонн в виде консолей;
  • иметь сопряжения с колоннами крайнего ряда при помощи полукапителей;
  • сопрягаться с окаймляющей балкой, поддерживаемой крайним рядом колонн;
  • опираться на стены.

1.5. Назначение капителей:

  • обеспечить необходимую жесткость, сопряжений перекрытий с колоннами в системе каркаса здания;
  • увеличить прочность плиты перекрытия на излом;
  • обеспечить плиту от продавливания в месте ее опирания на колонны;
  • увеличить жесткость перекрытия.

Рекомендуется применять, преимущественно капитель типа 1 (рис. 1). Могут также применяться капители типов 2 и 3 (рис. 2 и 3), а также другие типы капителей, если это технически и экономически целесообразно.

При применении квадратных или прямоугольных в плане капителей указанных типов рекомендуется принимать:

для капители типа 1 и в пределах от 0,08 до 0,12, где и пролеты конструкции; отношение высоты hк капители в месте перелома ее очертания к толщине плиты hп в пределах от до ; полуширину капители rx и ry соответственно в направлении пролетов и не меньшей чем

для капители типа 2 величину отношений и пределах от 0,1 до 0,15;

для капители типа 3 отношения и в пределах от 0,1 до 0,15; полуширину капители rx и ry не менее 0,175 соответствующего пролета.

Очертания капителей сборных конструкций допускается принимать близко описанными у очертаний рекомендуемых капителей.

Размеры капителей всех типов в каждом конкретном случае следует назначать на основании расчетов.

1.6. Плиты перекрытий рекомендуется проектировать единой толщины в пределах температурного блока каркаса здания.

Толщину плит из тяжелого бетона с обычным армированием рекомендуется принимать не менее 1 /35 большего пролета но осям колонн для перекрытий с капителями типа 2 и не менее 1 /40 большего пролета для перекрытий с капителями типа 1 и 3.

1.7. Колонны, поддерживающие безбалочные перекрытия, следует предусматривать, как правило, сплошного квадратного сечения. Могут также применяться колонны прямоугольного и круглого сечений, а при специальном обосновании - и кольцевого сечения (например изготавливаемые методом центрифугирования).

Рис.Схемы разрезки безбалочных перекрытий на сборные элементы:

1 - колонны; 2 - капители; 3 и 3 ? - межколонные (надколонные) плиты; 4 - пролетные плиты

1.8. Сборные безбалочные конструкции образуются из плит, капителей и колонн. Плиты подразделяются на межколонные (надколонные) и пролетные. Межколонные плиты опираются па капители и поддерживают пролетные плиты. Примеры рекомендуемых схем разрезки перекрытий на сборные элементы приведены на рис. 4.

Межколонные и пролетные плиты следует предусматривать, как правило, единой толщины. Может допускаться разная толщина межколонных и пролетных плит с превышением большей толщины над меньшей на 2 - 4 см.

Габаритные размеры сборных элементов должны отвечать условиям заводского изготовления на серийном оборудовании и транспортировки элементов. В связи с этим меньший размер элементов в плане следует принимать не более 3 м. В отдельных случаях при соответствующем обосновании эти размеры могут быть увеличены, но не более чем на 100 мм. Кроме того, ширину основных элементов перекрытий рекомендуется назначать, как правило, не менее 2400 мм. Доборные элементы могут быть меньшей ширины. Высота капители принимается не более 600 мм.

Колонны рекомендуются многоэтажной разрезки, т. е. длиной на несколько этажей.

1.9. При проектировании сборных железобетонных безбалочных конструкций рекомендуется предусматривать возможность монтажа каркаса здания на несколько этажей без замоноличивания сопряжений.

1.10. При устройстве в перекрытиях отверстий или проемов для пропуска инженерных коммуникаций, шахт лифтов, лестничных клеток и т.п. их следует размещать в пределах плитной части перекрытия. Устройство отверстий в пределах капителей, как правило, не рекомендуется. При необходимости в пределах капители допускается устраивать отверстия диаметром не более 200 мм.

Между капителями, в надколонной полосе монолитного безбалочного перекрытия отверстия рекомендуется размещать так, чтобы они занимали не более 0,5 ширины этой полосы, т. е. не более 0,5 ширины капители.

В сборных безбалочных перекрытиях целесообразно предусматривать специальные плиты с отверстиями, а в местах образования проемов плиты не устанавливать. В перекрытиях, в зонах, примыкающих к проемам, могут использоваться доборные плиты и капители, а в случае крайней необходимости и полукапители. В отдельных случаях при образовании отверстий допускается устраивать монолитные участки перекрытии.

Наличие отверстий и проемов в перекрытиях должно учитываться расчетом.

2. ОСНОВНЫЕ РАСЧЕТНЫЕ ПОЛОЖЕНИЯ

2.1. Расчет безбалочных конструкций должен производиться в соответствии с требованиями действующих СНиП, Инструкций Указаний, Руководств и с учетом рекомендаций, изложенных в настоящем Руководстве.

2.2. Конструкция рассматривается как система рам с жесткими узлами, расположенных в двух взаимно перпендикулярных направлениях.

В монолитной конструкции каждая рама образуется колоннами и полосой перекрытия, равной по ширине расстоянию между серединами двух пролетов, прилегающих к соответствующему ряду колонн.

В сборной конструкции рамы образуются колоннами, капителями и межколонными плитами. При обеспечении сопряжениями совместной работы межколонных и пролетных плит, т. е. когда обеспечивается равенство деформаций элементов вдоль сопряжения, пролетные плиты могут частично учитываться в работе ригелей рам каркаса. При этом в работе ригеля учитываются участки пролетных плит шириной 0,5а - 0,50ар (рис. 11) и не превышающей двух толщин пролетных плит.

2.3. Безбалочную конструкцию рекомендуется рассчитывать на нагрузки, равномерно распределенные по всему перекрытию или его части.

Нагрузки, действующие на перекрытия, могут быть приближенно приведены к эквивалентным равномерно распределенным нагрузкам по изгибающим моментам, поперечным силам или деформациям в зависимости от предельных состояний, по которым производится расчет. При расчете отдельных частей конструкции (например, на продавливание и т. п.) необходимо учитывать действительный характер нагрузки.

Поскольку каркас состоит из продольных и поперечных рам, вертикальные нагрузки на ригели принимаются по закону равнобедренного треугольника с максимальной ординатой в середине пролета (квадратная сетка колонн каркаса), или трапеции и треугольника (прямоугольная сетка колонн каркаса).

При определении усилий, действующих на элементы перекрытия, учитываются невыгоднейшие комбинации загружения рам.

При определении усилий, действующих на колонны каркаса, также учитываются невыгоднейшие комбинации загружения рам, но при отсутствии временной нагрузки или сплошном загружении временной нагрузкой перекрытия и пределах квадрата (прямоугольника), ограниченного линиями сетки колонн каркаса (рис. 5).

При (определении усилий, действующих в конструкции, кроме вертикальных нагрузок учитываются и горизонтальные нагрузки.

2.4. Сборная конструкция рассчитывается на восприятия полной нагрузки и эксплуатационной стадии при сваренных закладных деталях в сопряжениях элементов и достижении проектной прочности бетоном замоноличивания.

Расчет на нагрузки, действующие в процессе монтажа конструкций, производится при сопряжениях элементов, выполненных только на сварке, без замоноличивания. При этом устанавливается число этажей, при котором допускается возведение каркаса с незамоноличенными сопряжениями элементов.

2.5. Перераспределение усилий в рамах при статическом расчете каркаса выполняется в соответствии с «Руководством по расчету статически неопределимых железобетонных конструкций» (НИИЖБ, Москва, Стройиздат, 1975 г.).

Статический расчет рам производится с учетом переменных жесткостей по длине элементов. Кроме того, при расчете сборных конструкций на монтажные нагрузки жесткость ригелей на ширине незамоноличенного сопряжения межколонной плиты с капителью и в зонах, непосредственно примыкающих к этому сопряжению с двух сторон (ширина и плане каждой зоны задается равной толщине плиты), принимается только по стальным накладкам (стержням) и сварным швам; жесткость незамоноличенного сопряжения капители с колонной принимается по ослабленному отверстием сечению капители плюс жесткость, создаваемая сварными швами в этом сечении. Данные рекомендации следует уточнять в зависимости от конкретно принятых сопряжений.

2.6. Прогибы перекрытий с плоским потолком не должны превышать величин, указанных в п. 2 табл. 2 СНиП II-21-75. В монолитной конструкции за пролет l принимается расстояние между осями колонн; максимальный прогиб панели принимается равным разности перемещений в ее центре и центре надколонной полосы.

D сборной конструкции за пролет l принимается:

  • для ригелей рам - расстояние между осями колонy;
  • для квадратных в плане пролетных плит - размер диагонали плиты;
  • для прямоугольных в плане пролетных плит с отношением сторон более 1,5. 1 - размер большей стороны плиты.

Рис.Возможные схемы загружения перекрытий

а и б - сборных; в и г - монолитных

2.7. Горизонтальные смещения каркаса здания в продольном и поперечном направлениях в уровне покрытия не должны превышать:

высоты здания при учете полной нормативной ветровой нагрузки, определяемой как сумма статической и динамической составляющих в соответствии со СНиП II-6-74.

2.8. Предельно допустимая ширина раскрытия трещин в железобетонных безбалочных конструкциях, эксплуатируемых в условиях неагрессивной среды, принимается по главе СНиП II-21-75.

2.9. При проектировании безбалочных конструкций, предназначенных для эксплуатации в агрессивных средах, необходимо учитывать требования СНиП II-28-73.

2.10. Температурно-усадочные швы рекомендуется устраивать путем расположения в месте шва двойных колонн.

Расстояние между швами, измеряемое между осями колонн крайних рядов температурного блока каркаса здания, т. е. без учета выступающих консолей перекрытий, следует назначать в соответствии с требованиями действующих СНиП и Руководства на проектирование бетонных и железобетонных конструкций.

2.11. Конструкции рассчитываются на прочность, деформативность и раскрытие трещин при действии статических нагрузок. Динамические расчеты и расчет на выносливость, когда они необходимы, выполняются согласно специальным указаниям.

Расчет конструкций по прочности

2.12. Прочность (несущая способность) элементов каркаса определяется на основе расчета рам с учетом перераспределения усилий.

Кроме того, расчет прочности плит и капителей должен предусматривать:

  • расчет на продавливание;
  • расчет на излом полосы панелей вдоль или поперек перекрытия (рис. 6), где панель - участок перекрытия, ограниченный линиями сетки колонн каркаса;
  • расчет на одновременный излом смежных панелей разных рядов (рис. 7).

Расчет на излом отдельной панели не требуется.

Расчет на излом отдельной поперечной или продольной полосы панелей перекрытия является во всех случаях обязательным и выполняется в соответствии с указаниями «Руководства по расчету статически неопределимых железобетонных конструкций».

Расчет прочности сборного безбалочного перекрытия в целом на полосовое разрушение обусловливается возможностью одновременного разрушения межколонных (надколонных) и пролетных плит. При этом расчете рекомендации п. 4.11 указанного выше Руководства в части коэффициентов распределения арматуры допускается не учитывать.

При расчете перекрытия на одновременный излом смежных панелей разных рядов рекомендуется учитывать влияние распора, создаваемого колоннами (см. п. 4.10 указанного Руководства). Влияние распора допускается учитывать путем уменьшения сечения рабочей арматуры против величин, полученных из расчета без распора, на 10 %, если между рассчитываемой панелью и краем перекрытия имеются два ряда колонн или более; на 5 % - если между рассчитываемой панелью и краем перекрытия имеется один ряд колонн. Для консольных свесов плит, а также для панелей, свободно опертых на стены, влияние распора не учитывается.

2.13. В сборном перекрытии пролетные плиты рассматриваются как опертые на деформируемый контур, которым являются межколонные плиты.

Работая в системе безбалочного перекрытия, пролетные плиты находятся в весьма сложном напряженном состоянии (они испытывают влияние распора, частичного закрепления на контуре, деформативности контура и т. д.). Для упрощения расчета по прочности рабочую арматуру пролетной плиты допускается принимать из расчета ее как опертой на жесткий контур в соответствие с «Руководством по расчету статически неопределимых железобетонных конструкций», но без учета закрепления на контуре и без учета сил распора. Площадь сечения рабочей арматуры в каждом направлении рекомендуется принимать не менее 0,2 % от площади расчетного сечения бетона.

где Н - высота этажа,

В сборных конструкциях с расчетными замоноличенными сопряжениями элементов расчетную длину колонн первого этажа, надежно заделанных (защемленных) в фундаментах, можно принимать равной 0,8 Н.

Рис. Рабочая высота вертикальных (нормальных) сечений канители при действии изгибающего момента М

2.17. При расчете элементов сборных конструкций на нагрузки, действующие в стадии эксплуатации, а также в процессе монтажа каркаса здания, следует учитывать условия их работы, связанные с конкретно принятыми сопряжениями элементов.

2.18. Рабочая высота нормальных (вертикальных) сечений капители сборного перекрытия при расчете на действие изгибающих моментов принимается по рис. 8.

Стенки стакана капители рассматриваются как плиты, защемленные по трем сторонам и не опертые по четвертой (низ стакана).

Расчет конструкций по деформациям

2.19. Деформации (прогибы) элементов безбалочных конструкций вычисляются по усилиям из статического расчета каркаса на расчетные нагрузки, определяемые при коэффициенте перегрузки, равном единице.

Стадия работы конструкции, по которой должна производиться проверка прогиба перекрытия, устанавливается расчетом на образование трещин.

Если перекрытие запроектировано в соответствии с настоящим Руководством и «Руководством по расчету статически неопределимых железобетонных конструкций», опасным в отношении образования первых трещин будет являться, как правило, нормальное к плоскости перекрытия сечение капители под углом 45° к линии (разбивочной оси) колонн каркаса. При этом величина изгибающего момента, воспринимаемого сечением при образовании трещин в квадратной в плане капители ломаного очертания (см. п. 1.5 и рис. 1), может быть найдена, учитывая форму сечения, образованную двумя трапециями.

Определяется нагрузка отвечающая образованию первых трещин в растянутой зоне бетона капители перекрытия

Для безбалочных перекрытий с квадратными капителями ломаного очертания при квадратной сетке колонн каркаса нагрузка рТ .

Если расчетная нагрузка при коэффициенте перегрузки, равном 1, менее величины рТ . проверка прогибов производится при условии отсутствия трещин в перекрытии.

При необходимости расчета по образованию трещин в растянутой зоне бетона плоской, сплошного сечения плиты безбалочного перекрытия

2.20. Прогибы перекрытий, не имеющих трещин в растянутой зоне бетона, могут вычисляться методами теории упругости.

График прогибов перекрытия:

1 - опытная кривая; 2 - теоретическая прямая; 3 - точка, соответствующая образованию первых трещин; 4 - точка, соответствующая началу текучести арматуры по всем линиям излома.

Для монолитных перекрытий с квадратными капителями ломаного очертания при квадратной сетке колонн каркаса, спроектированных в соответствии с настоящим Руководством и «Руководством по расчету статически неопределимых железобетонных конструкций» величину прогиба центра панели 1 при отсутствии трещин в конструкции

2.21. Для безбалочных перекрытий, имеющих трещины, максимальный прогиб рекомендуется определять приближенно по линейной интерполяции между прогибом, отвечающим образованию первых трещин, и прогибом в момент, непосредственно предшествующий исчерпанию несущей способности перекрытия

рТ 1 /3h и не более 200 мм, где h - высота рассматриваемого сечения капители или плиты. Ширина зоны постановки поперечной арматуры должна быть не менее 1,5h .

3.10. Во избежание местных концентраций напряжений в местах резкого изменения сечения конструкции (изделия), например во внутренних углах, рекомендуется предусматривать фаски или закругления по возможности небольшого размера, чтобы не требовалось устройство местного армирования.

Рис. Соединение сборных элементов при помощи бетонных шпонок

lан - длина зоны анкеровки арматуры, принимаемая по СНиП

Рис. Примеры конструирования плит перекрытий в местах отверстий

а - при одиночных отверстиях с размерами до 700 мм; б и в - при ослаблении плиты отверстиями на 50 % и более или при сосредоточенных силах, приложенных к краям плиты у отверстия

3.11. Горизонтальная арматура стенок стакана капители должна быть непрерывной, замкнутой по внутреннему и наружному периметрам стакана; вертикальную арматуру этих стенок следует надежно анкерить в плите капители и нижней части стакана.

3.12. С целью уменьшения раскрытия трещин на контакте монолитного бетона со сборным в верхней зоне сопряжения капители с колонной у грани колонны рекомендуется устанавливать армируемые стержни (рис. 15).

3.13. Одиночные отверстия с максимальным размером до 700 мм устраиваются в перекрытии без местного утолщения плиты (рис. 21, а ). Ослабление плиты отверстием следует компенсировать дополнительно укладываемой вдоль краев отверстия арматурой.

Если к краю плиты, примыкающему к отверстию, приложены сосредоточенные силы, а также в случаях, когда сборная плита существенно ослаблена отверстиями (на 50 % и более), рекомендуется усиливать плиты вдоль краев отверстий жесткой арматурой (см. рис. 21 б ) или предусматривать утолщение плит, или окаймлять отверстия ребрами (см. рис. 21 в ).

Жесткость окаймляющих ребер должна быть не менее жесткости сечения участка плиты, занятого отверстием.

Утолщение (усиление) части пяты, примыкающей к отверстию, рекомендуется выполнять из условия равенства жесткостей сечения, ослабленного отверстием, и без учета ослабления.

При прямоугольных отверстиях по углам этих отверстий в плите следует укладывать по 2 - 4 арматурных стержня диаметром 10 - 14 мм, располагая их в плане под углом 45° к сторонам отверстия.

Несущая способность плит с отверстиями определяется расчетом.

4. КОНТРОЛЬ КАЧЕСТВА ИЗГОТОВЛЕНИЯ В ЗАВОДСКИХ УСЛОВИЯХ СБОРНЫХ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ БЕЗБАЛОЧНОЙ КОНСТРУКЦИИ

4.1. Оценка качества сборных железобетонных изделий производится в соответствии с требованиями ГОСТ 8829-77.

4.2. В связи с тем, что испытания нагружением элементов безбалочной конструкции и условиях завода-изготовителя весьма затруднены, текущий приемочный контроль качества изготовления сборных элементов в соответствии с п.п. 1.3 и 1.5 ГОСТ 8829-77 следует производить с использованием неразрушающих методов.

4.3. Наряду с требованием, изложенным в п. 4.2 настоящею Руководства, в соответствии с п. 1.6 ГОСТ 8829-77 необходимо проводить систематический операционный контроль на всех стадиях технологического процесса производства и приемки техническим контролем предприятия-изготовителя готовых изделий по показателям качества в соответствии с ГОСТ 13015-75, а также с государственными стандартами, техническими условиями или рабочими чертежами на данное изделие (сборный элемент).

4.4. Каждая партия элементов сборных конструкций должна быть снабжена паспортом, выдаваемым потребителю предприятием-изготовителем при отпуске изделий.

Руководство по проектированию железобетонных конструкций с жесткой арматурой

Руководство по проектированию железобетонных конструкций с жесткой арматурой

Цена на этот документ пока неизвестна. Нажмите кнопку "Купить" и сделайте заказ, и мы пришлем вам цену.

Официально распространяем нормативную документацию с 1999 года. Пробиваем чеки, платим налоги, принимаем к оплате все законные формы платежей без дополнительных процентов. Наши клиенты защищены Законом. ООО "ЦНТИ Нормоконтроль".

Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов.

Способы доставки
  • Срочная курьерская доставка (1-3 дня)
  • Курьерская доставка (7 дней)
  • Самовывоз из московского офиса
  • Почта РФ

Руководство распространяется на проектирование железобетонных конструкций с жесткой арматурой из профильной или листовой стали, защищенной бетоном.

3.7. Расчет прочности нормальных сечений изгибаемых элементов производится в зависимости от трех случаев положения нейтральной оси по отношению к жесткому профилю:

случай 1 - нейтральная ось не пересекает профиль жесткой арматуры;

случай 2 - нейтральная ось пересекает стенку профиля жесткой арматуры;

случай 3 - нейтральная ось пересекает полку профиля жесткой арматуры.

РАСЧЕТ ПРЯМОУГОЛЬНЫХ СЕЧЕНИЙ

Высота сжатой зоны сечения х определяется по формуле:

Если х ? ?Rh0. то прочность сечения проверяется из условия:

Если х > ?Rh0 то прочность сечения проверяется из условия:

Высота сжатой зоны сечения х при симметричном профиле жесткой арматуры определяется по формуле:

Прочность сечения при х ? ?Rh0 проверяется из условия:

При несимметричном профиле жесткой арматуры с усиленной растянутой зоной жесткая арматура заменяется при расчете симметричной, а избыток площади жесткой арматуры учитывается в величине Fa. Однако при проектировании следует соблюдать условие х ? ?Rh0 .

3.10. Случай 3 (рис 1,в).

Если при определении х по формуле (3) окажется, что нейтральная ось пересекает профиль жесткой арматуры, а при проверке по формуле (6) - не пересекает профиля, то расчет следует производить по случаю 3, полагая, что нейтральная ось проходит в пределах толщины верхней полки профиля жесткой арматуры.

Верхняя полка, лежащая на нейтральной оси, должна быть исключена из расчета как нерабочая.

Рис. 1. Случаи расположения нейтральной оси для прямоугольного сечения

а - случай 1, б - случай 2, в - случай 3

Прочность сечения проверяется из условия:

При этом, если (где h0 определено по случаю 1), то прочность сечения проверяется из условия (5).

РАСЧЕТ ТАВРОВЫХ СЕЧЕНИЙ

3.11. Проверка прочности тавровых сечений с полкой в сжатой зоне производится следующим образом:

а) если нейтральная ось проходит в полке, то расчет производится, как для прямоугольных сечений с шириной, равной ширине полки ;

б) если нейтральная ось проходит в ребре, то расчет производится с учетом сжатия в ребре, согласно п.п. 3.12 - 3.14.

Вводимая в расчет ширина полки принимается как для элементов с гибкой арматурой в соответствии с указаниями главы СНиП II-21-75.

Высота сжатой зоны сечения х определяется по формуле:

Расчет сечения при х ? ?Rh0 производится из условия:

Положение нейтральной оси при симметричном профиле жесткой арматуры определяется по формуле:

Прочность сечения при х ? ?Rh0 проверяется из условия:

При несимметричном профиле жесткой арматуры следует учитывать рекомендации п. 3.9.

Рис. 2. Случаи расположения нейтральной оси для таврового сечения

а - случай 1; б - случай 2, в - случай 3

3.14. Случай 3 (рис 2,в).

Если значение х. определенное по формуле (9), больше а. а значение х. определенное по формуле (11), меньше а. то прочность сечения проверяется из условия.

При этом, если (где h0 определено по случаю 1), то прочность сечения проверяется по условию (10), принимая .

РАСЧЕТ ПО ПРОЧНОСТИ СЕЧЕНИЙ, НОРМАЛЬНЫХ К ПРОДОЛЬНОЙ ОСИ ИЗГИБАЕМОГО ЭЛЕМЕНТА

Пример 1. Дано размеры сечения по рис. 3; изгибающий момент M = 16 тс·м, бетон марки М 300 (Rпр = 135 кгс/см 2. mб1 = 1, где mб1 - коэффициент условий работы бетона, учитывающий длительность действия нагрузки и принимаемый по табл. 15 СНиП II-21-75); жесткая арматура из стали класса С 38/23 - двутавр № 20 (Rаж = 2100 кгс/см 2 ) площадью сечения Fаж = 26,8 см 2 ; гибкая растянутая арматура стали класса A-III (Ra = 3400 кгс/см 2 ) площадью сечения Fа = 1,57 см 2 (2 O 10).

Требуется проверить прочность сечения.

Расчет. Определяем высоту сжатой зоны сечения применительно к первому случаю расчета по формуле (3):

т.е. действительно имеет место 1-й случай расчета.

Определяем а1 - расстояние от центра тяжести растянутой арматуры до крайнего растянутого волокна по формуле:

Из табл. 1 имеем ?R = 0,58.

Так как x = 18,2 см < ?Rh0 = 0,58·35,6 = 20,6 см, прочность сечения проверяем из условия (4):

т.е. прочность сечения обеспечивается.

Рис. 3. К примеру расчета 1

Рис. 4. К примеру расчета 2

Пример 2. Дано: размеры сечений по рис. 4; изгибающий момент М = 29 тс·м; бетон марки М 300 (Rпр = 135 кгс/см 2. mб1 = 1); гибкая растянутая и сжатая арматура из стали класса А-III (Rа = Rас = 3400 кгс/см 2 ) площадью сечения = 1,57 см 2 (2 O 10), жесткая арматура из стали класса С 38/23 - двутавр № 40 (Raж = 2100 кгс/см 2 ) площадью сечения Fаж = 71,4 см 2 .

Требуется проверить прочность сечения.

Расчет. Высоту сжатой зоны сечения х определяем применительно ко 2-му случаю расчета по формуле (6) при

т.е. действительно имеет место 2-й случай расчета.

Прочность сечения проверяем из условия (7) при

т.е. прочность сечения обеспечивается.

Пример 3. Дано, размеры сечения по рис. 5; изгибающий момент М = 19 тс·м; бетон марки М300 (Rпр = 135 кгс/см 2. mб1 = 1); жесткая арматура из стали класса С 38/23 - двутавр № 30 (Rаж = 2100 кгс/см 2 ) площадью сечения Fаж = 46,5 см 2 ; гибкая растянутая арматура из стали класса А-III (Rа = 3400 кгс/см 2 ) площадью сечения Fa = 1,57 см 2 (2 O 10). Требуется проверить прочность сечения.

Расчет. Определяем высоту сжатой зоны бетона х применительно к 1-му случаю расчета по формуле (3):

т.е. расчет по 1-му случаю исключается.

Определяем значение х применительно ко 2-му случаю расчета по формуле (6) при

т.е. расчет по 2-му случаю исключается, и имеет место 3-й случай расчета.

Определим рабочую высоту h0 исходя из 1-го случая. Расстояние от центра тяжести растянутой арматуры до крайнего растянутого волокна а1 равно:

Из табл. 1 имеем ?R = 0,58.

Так как = 15,5 см < ?Rh0 = 0,58·30,5 = 17,7 см, прочность сечения проверяем из условия (8), при

т.е. прочность сечения обеспечивается.

Рис. 5. К примеру расчета 3

Рис. 6. К примеру расчета 4

Пример4. Дано: размеры сечения по рис. 6; изгибающий момент М = 28 тс·м; бетон марки М300 (Rпр = 135 кгс/см 2. mб1 = 1); жесткая арматура из стали класса С 38/23 - двутавр № 30 (Rаж = 2100 кгс/см 2 ) площадью сечения Fаж = 46,5 см 2 ; гибкая растянутая арматура из стали класса А-III (Rа = 3400 кгс/см 2 ) площадью сечения Fa = 1,57 см 2 (2 O 10).

Требуется проверить прочность сечения.

Расчет. Определяем положение нейтральной оси применительно к 1-му случаю по формуле (3) как для прямоугольного сечения шириной

т.е. нейтральная ось проходит в полке, и сечение рассчитываем как прямоугольное. Так как x = 3,8 < = 15,5 см, имеет место 1-й случай расчета.

Определяем рабочую высоту сечения h0. при

Из табл. 1 имеем ?R = 0,58.

Так как = 3,8 см < ?Rh0 = 0,58·30,5 = 17,7 см, прочность сечения проверяем из условия (4):

т.е. прочность сечения обеспечивается.

Пример 5. Дано: размеры сечения по рис. 7; изгибающий момент М = 35 тс·м; бетон марки М300 (Rпр = 135 кгс/см 2. mб1 = 1); гибкая растянутая арматура из стали класса А-III (Rа = 3400 кгс/см 2 ) площадью сечения Fа = 6,28 см 2 (2 O 20), жесткая арматура из стали класса С 38/23 - двутавр № 40 (Rаж = 2100 кгс/см 2 ) площадью сечения Fаж = 71,4 см 2 .

Рис. 7. К примеру расчета 5

Требуется проверить прочность сечения.

Расчет. Определяем положение нейтральной оси применительно к 1-му случаю расчета по формуле (3) как для прямоугольного сечения шириной

т.е. нейтральная ось пересекает ребро и жесткий профиль, и сечение рассчитываем как тавровое по 2-му случаю.

Вычисляем высоту сжатой зоны х таврового сечения по формуле:

т.е. действительно имеет место 2-й случай расчета.

Прочность сечения проверяем из условия (12), определив

т.е. прочность сечения обеспечивается.

Пример 6. Дано: размеры сечения по рис. 8; изгибающий момент М = 29 тс·м; бетон марки М300 (Rпр = 135 кгс/см 2. тб1 = 1); жесткая арматура из стали класса С 38/23 - двутавр № 30 (Rаж = 2100 кгс/см 2 ) площадью сечения Fаж = 46,5 см 2 ; гибкая растянутая арматура из стали класса A-III (Rа = 3400 кгс/см 2 ) площадью сечения Fa = 6,28 см 2 (2 O 20).

Расчет. Определяем высоту сжатой зоны сечения х применительно к 1-му случаю расчета как прямоугольного сечения шириной

Рис. 8. К примеру расчета 6

т.е. нейтральная ось проходит в ребре, и сечение рассчитываем как тавровое. Так как x = 11,8 см < = 15,5 см, то имеет место 1-й случай расчета.

Вычисляем высоту сжатой зоны х по 1-му случаю по формуле (9):

т.е. 1-й случай расчета исключается.

Вычисляем высоту сжатой зоны х по 2-му случаю по формуле (11) при

т.е. 2-й случай исключается и имеет место 3-й случай расчета. Определим рабочую высоту h0. исходя из 1-го случая расчета. Расстояние от центра тяжести растянутой арматуры до крайнего растянутого волокна a1 равно:

Из табл. 1 имеем ?R = 0,58.

Так как = 15,5 см < ?Rh0 = 0,58·31,9 = 18,5 см, прочность сечения проверяем из условия (13) при

т.е. прочность сечения обеспечивается.

РАСЧЕТ ПО ПРОЧНОСТИ СЕЧЕНИЙ, НАКЛОННЫХ К ПРОДОЛЬНОЙ ОСИ ИЗГИБАЕМОГО ЭЛЕМЕНТА

3.15. Расчет по прочности сечений, наклонных к продольной оси изгибаемых элементов, производится по поперечной силе и по изгибающему моменту.

Расчет наклонных сечений по поперечной силе

3.16. При расчете элементов должна быть обеспечена прочность бетона на действие наклонных сжимающих усилий из условия

при этом значение Rпр для бетонов проектных марок по прочности выше М 400 принимается как для бетона марки М 400.

3.17. Расчет наклонных сечений по поперечной силе допускается не производить, если соблюдается одно из условий:

В этом случае поперечная гибкая арматура определяется в соответствии с требованиями главы СНиП II-21-75.

3.18. При расчете наклонных сечений на действие поперечной силы предельные усилия определяются из следующих предпосылок:

расчетное наклонное сечение принимается под углом 45° к продольной оси изгибаемого элемента;

в расчет вводится вся поперечная гибкая арматура и стенка профиля жесткой арматуры, пересекаемые рассматриваемым наклонным сечением, с растягивающими напряжениями, равными соответственно расчетным сопротивлениям Rax и 0,8 Rаж . При применении составных (сварных) профилей при переменной по высоте толщине стенки (утолщение в местах приварки профильной стали) в расчет вводится минимальная по высоте толщина стенки. Жесткая арматура должна иметь надежную анкеровку по концам, при которой не может произойти среза бетона по горизонтальной плоскости над профилем. Такая анкеровка имеет место в каркасных конструкциях, когда жесткая арматура ригеля присоединяется к жесткой арматуре колонн. На свободных же опорах балок потребуется специальная анкеровка в соответствии с рекомендациями п.п. 3.23 и 5.12 настоящего Руководства;

поперечное усилие в бетоне над наклонной трещиной определяется в зависимости от его расчетного сопротивления растяжению RР. рабочей высоты и размеров сечения.

3.19. Расчет наклонных сечений элементов по поперечной силе производится в следующих местах по длине элемента:

а) в сечениях, проходящих через грань опоры;

б) в сечениях, проходящих через точки изменения интенсивности поперечного армирования на уровне растянутой гибкой арматуры;

в) в сечениях, проходящих через расположенные в растянутой зоне начала отгибов.

3.20. Расчет наклонных сечений по поперечной силе (рис. 9,а ) производится из условия:

где Q - поперечная сила от внешней нагрузки, действующая в наклонном сечении, т.е. равнодействующая всех поперечных сил от внешней нагрузки, расположенных по одну сторону от рассматриваемого наклонного сечения;

- сумма поперечных усилий, воспринимаемых соответственно поперечной Fx и отогнутой F0 арматурой, пересекающей наклонное сечение;

Fх - площадь сечения поперечных стержней (хомутов), расположенных в одной, нормальной к продольной оси элемента плоскости, пересекающей рассматриваемое наклонное сечение;

F0 - площадь сечения отогнутых стержней, расположенных в одной, наклонной к продольной оси элемента плоскости, пересекающей рассматриваемое наклонное сечение;

a - угол наклона отогнутых стержней к продольной оси элемента в рассматриваемом наклонном сечении;

Qб - поперечное усилие, воспринимаемое бетоном в наклонном сечении и принимаемое

Рис. 9. Схемы усилий при расчете наклонного сечения по прочности

а - по поперечной силе; б - по изгибающему моменту

Расчет наклонных сечений по изгибающему моменту

3.21. При расчете наклонных сечений на действие изгибающего момента предельные усилия определяются исходя из общих положений, приведенных в п. 3.6 настоящего Руководства. Расчетное наклонное сечение принимается под углом 45° к продольной оси изгибаемого элемента.

3.22. Расчет наклонных сечений элементов по изгибающему моменту производится в местах по длине элемента, указанных в п. 3.19 и в сечениях, где площадь продольной арматуры в растянутой зоне изменяется по длине элемента.

3.23. Расчет наклонных сечений по изгибающему моменту (рис. 9,б ) производится из условия:

где М - момент всех внешних сил, действующих по одну сторону от рассматриваемого наклонного сечения, относительно оси, проходящей через точку приложения равнодействующей усилий в сжатой зоне и перпендикулярной плоскости действия изгибающего момента;

- сумма моментов относительно той же оси соответственно от усилий в растянутой жесткой арматуре, в гибкой продольной, отогнутой и поперечной арматуре, пересекающей растянутую зону рассматриваемого сечения;

z1 - расстояние от равнодействующей усилий в растянутой жесткой арматуре до указанной выше оси;

z2. z0. zх - расстояние от плоскостей расположения соответственно гибкой продольной, отогнутой и поперечной арматуры до указанной выше оси.

Высота сжатой зоны в наклонном сечении, измеренная по нормали к продольной оси элемента в конце наклонного сечения, определяется из условия равновесия проекций усилий в бетоне и арматуре наклонного сечения на продольную ось элемента согласно рекомендациям п.п. 3.8 - 3.14.

Усилие Nаж в растянутой жесткой арматуре определяется следующим образом:

а) для жестких узлов при обеспечении равнопрочной приварки жесткой арматуры ригеля к жесткой арматуре колонны . При применении прокатных профилей из низколегированной стали к расчетному сопротивлению стали жесткой арматуры вводится коэффициент условий работы 0,9;

б) для шарнирных узлов при анкерах в виде арматурных стержней, приваренных к жесткой арматуре ригеля (см. п. 5.12), усилие Nаж принимается равным предельному сдвигающему усилию, определенному как для закладных деталей согласно главе СНиП II-21-75, но не более усилия, указанного в подпункте «а». При жестких упорах, приваренных к жесткой арматуре ригеля (см. п. 5.12), . но не более усилия, указанного в подпункте «a». Fуп - площадь жестких упоров (площадь смятия бетона). Жесткие упоры рассчитываются как металлические конструкции на давление; равномерно распределенное по площади жестких упоров и равное Rпр. Швы приварки жестких упоров к жесткой арматуре балки допускается рассчитывать только на срез. Допускается на свободных опорах балок не предусматривать анкеры, если при прямоугольном сечении балки профиль заходит в сжатую зону бетона не менее чем на половину ее высоты, а при тавровом сечении балки не менее чем на половину толщины плиты и располагается не менее чем на 5 см выше низа плиты. В этом случае усилие Nаж принимается в соответствии с подпунктом «а».

Если не обеспечивается полной анкеровки гибкой продольной арматуры, то расчетное сопротивление ее принимается сниженным согласно главе СНиП II-21-75.

РАСЧЕТ ПО ПРОЧНОСТИ СЕЧЕНИЙ, НАКЛОННЫХ К ПРОДОЛЬНОЙ ОСИ ИЗГИБАЕМОГО ЭЛЕМЕНТА

Пример7. Дано: размеры поперечного сечения шарнирно-опертой балки по рис. 10; бетон марки М 300 (Rпр = 135 кгс/см 2. mб1 = 1, Rр = 10 кгс/см 2 ); жесткая арматура из стали класса С 38/23 - двутавр № 20 (Fаж = 26,8 см 2. Rаж = 2100 кгс/см 2 ) с толщиной стенки ?c = 0,5 см; гибкая продольная арматура из стали класса А-III (Rа = 3400 кгс/см 2 ) площадью сечения Fa = 1,57 см 2 (O 10) заведена за грань опоры на длину 20 см; поперечная гибкая арматура - двухветвевые хомуты из стали класса A-I (Rа =2100 кгс/см 2 ), диаметром 10 мм с шагом 25 см; расчетная поперечная сила на опоре Q = 20 т.

Рис. 10. К примеру расчета 7

Требуется проверить прочность наклонного сечения по поперечной силе и по изгибающему моменту и рассчитать жесткие анкерные упоры.

Расчет по поперечной силе

Проверяем требования п.п. 3.16 и 3.17.

Для этого вычисляем величину h0 исходя из 1-го случая расчета

Высота стенки двутавра равна

Так как Rрbh0 = 40·25·35,6 = 8,9 т < Q = 20 т, а 0,8 hст?сRаж = 0,8·18,3·0,5·2100 = 15,4 т < Q = 20 т, то проверку сечения по поперечной силе производим из условия (17).

Для этого определяем усилие, воспринимаемое бетоном, по формуле (18)

Усилие, воспринимаемое стенкой двутавра, равно 0,8 hст?сRаж = 0,8·18,3·0,5·2100 = 15,4 т.

Так как Q = 20 т < Qб + 0,8 hст?сRаж = 8,9 + 15,4 = 24,3 т, то прочность сечения по поперечной силе достаточна без учета хомутов.

Расчет по изгибающему моменту

Принимаем длину проекции наклонного сечения с = h = 50 см. Момент в конце наклонного сечения M = Qc = 20·0,5 = 10 тс·м.

Определяем высоту сжатой зоны бетона применительно к 1-му случаю расчета по формуле (3) исходя из полного расчетного сопротивления жесткой арматуры:

т.е. действительно имеет место 1-й случай расчета.

z1 = 50 - 5 - 20 / 2 - 18,3 / 2 = 25,85 см;

z2 = 50 - 3,5 - 18,3 / 2 = 37,35 см.

Вычисляем усилие в поперечном армировании на единицу длины элемента в пределах наклонного сечения, при шаге u = 25 см.

Момент от усилия, воспринимаемого хомутами, относительно центра тяжести сжатой зоны бетона представляем в виде:

Проверим анкеровку гибкой арматуры.

Длина анкеровки lан согласно главе СНиП II-21-75 равна:

Поскольку значение lан меньше длины заведения гибкой арматуры за грань опоры lоп в расчете учитываем полное расчетное сопротивление гибкой арматуры.

Определяем усилие в жесткой арматуре Nаж в наклонном сечении исходя из условия (19):

Поскольку жесткая арматура не приварена к жесткой арматуре колонны, определяем необходимую площадь жестких упоров:

Принимаем три упора из уголков L длиной 10 см, усиленных ребрами жесткости. Фактическая площадь упоров будет равна:

РАСЧЕТ ПРОЧНОСТИ СЖАТЫХ ЭЛЕМЕНТОВ

3.24. При расчете прочности сжатых железобетонных элементов с жесткой арматурой должен приниматься во внимание случайный эксцентриситет продольного усилия в двух направлениях, обусловленный не учтенными в расчете факторами (неоднородностью свойств бетона по сечению элементов и др.). Значение этого эксцентриситета следует принимать не менее 1 /600 длины элемента между точками закрепления его в расчетном направлении не менее 1 /30 высоты сечения элемента и не менее 1 см.

Для сжатых элементов статически неопределимых конструкций величина эксцентриситета продольного усилия относительно центра сжатия сечения е0 принимается равной эксцентриситету . определяемому из статического расчета конструкции, но не менее случайного начального эксцентриситета . Для сжатых элементов статически определимых конструкций эксцентриситет продольного усилия е0 находится как сумма эксцентриситетов продольного усилия, определенного из статического расчета конструкции и случайного .

При симметричном расположении жесткой арматуры допускается эксцентриситет е0 находить относительно центра тяжести сечения.

Примечание. Центром сжатия сечения считается точка приложения равнодействующей сжимающих усилий в бетоне и во всей продольной арматуре, подсчитанных исходя из расчетных сопротивлений материалов

3.25. Расчет сжатых элементов производится как в плоскости расчетного эксцентриситета продольного усилия, так и в нормальной к ней плоскости, в которой е0 принимается равным величине случайного эксцентриситета. При этом в обоих случаях учитывается влияние прогиба.

Расчет на косое внецентренное сжатие производится при расчетных эксцентриситетах продольной силы е0 в двух направлениях. Если расчет конструкции произведен по недеформированной схеме, то в элементах при (rп - радиус инерции приведенного поперечного сечения элемента в соответствующей плоскости с учетом всей продольной арматуры) влияние прогибов на ее несущую способность как в плоскости расчетного эксцентриситета продольного усилия, так и в нормальной к ней плоскости, следует учитывать путем умножения е0 на коэффициент ?. определяемый по формуле

где Nкр - условная критическая сила, равная

l0 - расчетная длина элемента, принимаемая согласно указаниям главы СНиП II-21-75;

I0 - момент инерции бетонного сечения относительно оси, проходящей через центр тяжести приведенного сечения и нормальной к плоскости расчетного эксцентриситета, с учетом вытеснения бетона сечением арматуры;

Iаж - момент инерции жесткой арматуры относительно той же оси;

Iа - момент инерции арматурного каркаса относительно той же оси;

t - коэффициент, принимаемый равным . но не менее величины

kдл - коэффициент, учитывающий влияние длительного действия нагрузки на прогиб элемента в предельном состоянии, определяемый по формуле

здесь М1дл и М1 - моменты относительно оси, нормальной к плоскости расчетного эксцентриситета и проходящей через центр наиболее растянутого или наименее сжатого (при целиком сжатом сечении) стержня арматуры, соответственно от постоянных и длительных нагрузок и от всех нагрузок.

При наличии расчетных эксцентриситетов в двух направлениях коэффициент ? определяется отдельно для каждого направления.

3.26. Проверка прочности нормальных сечений сжатых железобетонных элементов с жесткой арматурой производится из условия

где е - расстояние от точки приложения продольной силы до оси, проходящей через центр тяжести наиболее растянутого (наименее сжатого) стержня гибкой арматуры параллельно прямой, ограничивающей сжатую зону;

Sб - статический момент площади сечения бетона сжатой зоны относительно той же оси;

?аi - напряжение в каждом участке жесткой арматуры и в каждом стержне гибкой арматуры, определяемое согласно рекомендациям п. 3.27;

Fai - площадь участков жесткой арматуры и стержней гибкой арматуры, расположенных на различных расстояниях от указанной выше оси;

yai - расстояние от центра тяжести сечения участка жесткой арматуры и сечения гибкого стержня до рассматриваемой оси.

Положение прямой, ограничивающей сжатую зону, определяется из условия

и, кроме того, из условия, чтобы точка приложения равнодействующей сжимающих усилий в бетоне и арматуре, находилась на прямой, соединяющей точки приложения внешней продольной силы и равнодействующей растягивающих усилий в арматуре (силовая линия).

3.27. Напряжения ?ai в жесткой и гибкой арматуре определяются по формуле

где ?0 - см. определение к формуле (2);

h - размер сечения по силовой линии;

h0i - расстояние от оси, проходящей через центр тяжести сечения рассматриваемого стержня гибкой арматуры или участка жесткой арматуры и параллельной прямой, ограничивающей сжатую зону, до наиболее удаленной точки сжатой зоны сечения элемента.

Напряжение ?ai вводится в формулы (24) и (25) со своим знаком, полученным при расчете по формуле (26).

Если абсолютные значения напряжений в арматуре, определенные по формуле (26), превышают расчетные сопротивления растяжению или сжатию, то в формулы (24) и (25) подставляются расчетные сопротивления растяжению (со знаком «плюс») или расчетные сопротивления сжатию (со знаком «минус»).

3.28. При расчете сжатых элементов учитывается вытеснение бетона сжатой зоны сечением жесткой арматуры.

РАСЧЕТ ПРЯМОУГОЛЬНЫХ СЕЧЕНИЙ ПРИ ПРОДОЛЬНОЙ СИЛЕ В ПЛОСКОСТИ СИММЕТРИИ

3.29. Расчет прочности прямоугольных сечений сжатых элементов с жесткой и гибкой арматурой, сосредоточенной у растянутой (или менее сжатой) и у сжатой граней (рис. 11), производится в зависимости от высоты сжатой зоны х. величина которой определяется по формуле

При х ? ?Rh0 (?R определяется в соответствии с рекомендациями п. 3.6) прочность сечения элемента допускается проверять из условия

где е1 - эксцентриситет продольного усилия относительно равнодействующей усилий в растянутых жесткой и гибкой арматурах;

- расстояние от центра тяжести сжатой жесткой арматуры до сжатой грани элемента.

При х > ?Rh0 и марке бетона М 400 и ниже расчет сечений производится из условия (28), принимая высоту сжатой зоны по формуле

Рис. 11. Схема усилий в прямоугольном сечении сжатого элемента с жесткой и гибкой арматурой, сосредоточенной у растянутой и у сжатой граней

В случае симметричной жесткой и гибкой арматуры допускается проверку прочности сечений при производить при помощи графиков, приведенных на рис. 12. При этом проверяется условие

где m определяется по графику на рис. 12 в зависимости от значений

Рис. 12. График несущей способности прямоугольного сечения с жесткой и гибкой арматурой, сосредоточенной у растянутой и сжатой граней

(сплошные линии - марка бетона 300, пунктирные - то же, 500)

3.30. Расчет прочности прямоугольных сечений элементов с жесткой арматурой из симметричных профилей, стенки которых расположены параллельно плоскости действия изгибающего момента, а полки и гибкая арматура расположены у граней элемента (рис. 13), производится в зависимости от высоты сжатой зоны х

При прочность сечения элемента допускается проверять из условия

При расчетах сечений элементов с жесткой арматурой из низколегированной стали к расчетному сопротивлению этой стали вводится коэффициент условий работы 0,9 в формулы (31) и (32).

В случае несимметричного профиля жесткой арматуры он заменяется на симметричный, а избыток площади рассматривается как гибкая арматура.

Рис. 13. Схема усилий в прямоугольном сечении сжатого элемента с жесткой арматурой в виде симметричного профиля, стенка которого расположена параллельно плоскости действия изгибающего момента

Рис. 14. График несущей способности прямоугольного сечения с жесткой арматурой в виде симметричного профиля, стенка которого расположена параллельно плоскости действия изгибающего момента

(сплошные линии - сталь класса С 38/29; пунктирные - сталь класса С 48/33)

В случае симметричной жесткой и гибкой арматуры допускается проверку прочности сечений производить при помощи графиков, приведенных на рис. 14. При этом проверяется условие

n определяется по графику на рис. 14 в зависимости от

3.31. Расчет прочности внецентренно сжатых элементов прямоугольных сечений с арматурой из профилей, расположенных в центральной зоне, или с арматурой крестового, крестово-диагонального и коробчатого сечений, а также с арматурой в виде сердечника (ядровое армирование) из полосы либо из пакета полос (рис. 15, а - е ), в случае симметричной жесткой и гибкой арматуры допускается производить из условия

k = 1 - при жесткой арматуре из стали класса С 46/33;

k = 1,1 - при жесткой арматуре из стали класса С 38/23.

При этом отношение должно быть не менее 0,3, за исключением жесткой арматуры из профиля, стенка которого расположена перпендикулярно плоскости действия изгибающего момента (рис. 15, а ), где отношение должно быть не менее 0,2. Кроме того, должно выполняться условие

где k1 = 2 при жесткой арматуре в виде сердечника (рис. 15, в );

k2 = 3 при остальной жесткой арматуре, указанной в настоящем пункте (рис. 15, а. б. г. д. е ).

3.32. Расчет прочности прямоугольных сечений элементов с жесткой арматурой, работающих на косое внецентренное сжатие, производится в общем случае согласно рекомендациям, приведенным в п.п. 3.24 - 3.28, при этом определяется положение прямой, ограничивающей сжатую зону, при помощи последовательных приближений.

3.33. Проверку прочности при косом внецентренном сжатии элементов прямоугольного сечения с симметричной гибкой и жесткой арматурой типа двутавра при и а также в виде уголков (рис. 15, ж ) допускается выполнять при помощи графиков, приведенных на рис. 16.

Прочность сечения считается обеспеченной, если точка с координатами и находится внутри области, ограниченной кривой, отвечающей параметру n. и осями координат.

Значения Мх и My характеризуют величины изгибающих моментов от внешней нагрузки, относительно центра тяжести сечения, действующих соответственно в плоскостях симметрии х и у. Влияние прогиба элемента учитывается путем умножения моментов Мх и Му на коэффициенты ?х и ?y. определяемые соответственно для плоскостей х и у согласно рекомендациям п. 3.25.

Рис. 15. Прямоугольные сечения с жесткой арматурой

а - из профиля, стенка которого расположена перпендикулярно плоскости действия изгибающего момента; б - крестового сечения; в - в виде сердечника из полосы либо из пакета полос (ядровое армирование); г - крестово-диагонального сечения; д - коробчатого сечения; е - из профиля, стенка которого расположена параллельно плоскости действия изгибающего момента; ж - в виде уголков

Значения и характеризуют величины предельных изгибающих моментов, которые могут восприниматься сечением в плоскости симметрии х и у с учетом действующей продольной силы N в центре тяжести сечения.

Значения и определяются с помощью графиков на рис. 12, 14 и 17. При жесткой арматуре в виде уголков значения и принимаются равными где b и h0 - размеры сторон сечений, перпендикулярных и параллельных рассматриваемой плоскости; m - определяется по графику на рис. 12. При жесткой арматуре в виде двутавра значения и принимаются равными (где m - определяется по графикам на рис. 14, если стенка двутавра параллельна рассматриваемой плоскости, и по рис. 17, если стенка двутавра перпендикулярна рассматриваемой плоскости).

Параметр n определяется по формуле

3.34. Расчет прочности при косом внецентренном сжатии элементов прямоугольного сечения с симметричной гибкой и жесткой арматурой, указанной в п. 3.31, и выполнении условия (38) в каждой плоскости симметрии допускается производить из условия

где Nx - предельная продольная сила, действующая в плоскости оси х, которая может быть воспринята сечением при заданном эксцентриситете в этой плоскости;

Nц - предельная продольная сила, которая может быть воспринята сечением при эксцентриситете в направлении минимальной жесткости.

Рис. 16. График несущей способности прямоугольного сечения при косом внецентренном сжатии с жесткой арматурой

а - в виде двутавра; б - в виде уголков

Рис. 17. График несущей способности прямоугольного сечения с жесткой арматурой в виде двутавра, стенка которого расположена перпендикулярно плоскости действия изгибающего момента.

(сплошные линии - сталь класса С 38/23, пунктирные - то же, С 46/33).

Nx. Ny и Nц определяются из условия (36). Для жесткой арматуры типа «сердечник» Nц определяется без учета случайного эксцентриситета, т.е. по формуле (37).

Условием (40) можно пользоваться при следующих отношениях и для различных типов жесткой арматуры:

в виде сердечника и ; крестового и крестово-диагонального сечения при ; коробчатого сечения . но не более 0,75; двутаврового сечения и ;

РАСЧЕТ ПРОЧНОСТИ ЖЕЛЕЗОБЕТОННЫХ СЖАТЫХ ЭЛЕМЕНТОВ

Пример 8. Дано: железобетонная колонна с размерами поперечного сечения по рис. 18; жесткая арматура в виде сердечника из пакета полос низколегированной стали класса С 46/33 (Rаж = 2900 кгс/см 2 ; Еаж = 2,1·10 6 кгс/см 2 ), сечением 12?26 см; гибкая арматура из стали класса А-III (Rа = 3400 кгс/см 2 ; Еa = 2·10 6 кгс/см 2 ) площадью сечения Fa = = 16,09 см 2 (2 O 32); марка бетона М 500 (Rпр = 185 кгс/см 2 с учетом mб1 = 0,85; Еб = 3,25·10 5 кгс/см 2 ); расчетная длина колонны l0 = l = 3,6 м; расчетная продольная сила N = 815 тс, длительно действующая ее часть Nдл = 570 тс.

Требуется проверить прочность сечения колонны.

Рис. 18. К примеру расчета 8

1 - продольная арматура 2 O 32 А-III; 2 - стальной сердечник

Расчет. Эксцентриситет принимаем равным случайному эксцентриситету (см. п. 3.24) и располагаем его в плоскости наименьшего размера стального сердечника, т.е. bж = 26 см, hж = 12 см. Так как

Учитываем влияние прогиба колонны согласно п. 3.25.

По формулам (22) и (23) вычисляем kдл и tmin :

РАСЧЕТ ИЗГИБАЕМЫХ ЭЛЕМЕНТОВ ПО ПРЕДЕЛЬНЫМ СОСТОЯНИЯМ ВТОРОЙ ГРУППЫ

Пример11. Дано: железобетонная монолитная балка с размерами поперечного сечения по рис. 20; бетон марки М 300 (Еб = 2,9·10 5 кг/см 2 ) жесткая арматура - двутавр № 40 из стали класса С 38/23 (Еаж = 2,1·10 6 кг/см 2 ; Faж = 72,6 см 2 ; Jаж = 19062 см 4 ); гибкая арматура растянутая и сжатая 2 O 10 из стали класса A-III (Fa = = 1,57 см 2 ; Fа = 2·10 6 кг/см 2 ); момент от полной нагрузки без учета собственного веса Mп = 24,7 тс·м, в том числе момент от постоянных и длительных нагрузок Мдл = 18 тс ·м; влажностный режим нормальный (влажность воздуха выше 40 %).

Рис. 20. К примерам расчета 11 и 12

Требуется рассчитать балку по раскрытию трещин.

в соответствии с п. 4.3 в растянутой зоне бетона образуются трещины, проверка ширины раскрытия которых необходима.

согласно п. 4.4 расчет по раскрытию трещин производится только на действие момента Мдл .

Определяем момент инерции Jп приведенного сечения, не вводя в расчет площадь бетона растянутой зоны. Для этого вычисляем коэффициенты приведения площади арматуры к бетону nаж. nп. а также величины

Определяем напряжение в крайних растянутых стрежнях арматуры

Находим значение приведенного диаметра dпр .

Для этого определяем площадь арматуры, расположенной в растянутой зоне, и ее периметр Па .

Вычисляем ширину раскрытия трещин ат. Для этого определяем ?

Принимаем ? = 0,02.

что меньше предельно допустимого значения ат дл = 0,3 мм.

Пример12. По данным примера 11 необходимо определить прогиб балки от постоянной и длительной нагрузок Мдл = 18 тс·м; нагрузка от собственного веса и веса опалубки q = 1300 кг/м; вся нагрузка равномерно распределенная; расчетный пролет 6 м, перекрытие с ребристым потолком.

Расчет. Полный прогиб балки определяем согласно указаниям п. 4.12.

Вычисляем значение прогиба fж. Из примера 11 известно, что момент инерции Jп приведенного сечения, определяемый без учета бетона растянутой зоны, равен Jп = 469000 см 4. a = 1,16·10 5 кг/см 2 .

Кривизну от действия постоянных и длительных нагрузок без учета собственного веса определяем по формуле (45)

Прогиб fж находим по формуле (49). Согласно табл. 2 коэффициент

Прогиб fc определяем по формуле

Полный прогиб балки равен:

f = fж + fс = 1,25 + 0,55 = 1,8 см < 2,5 см (2,5 см - предельно допустимый прогиб согласно главе СНиП II-21-75).

5. КОНСТРУКТИВНЫЕ ТРЕБОВАНИЯ

МИНИМАЛЬНЫЕ РАЗМЕРЫ СЕЧЕНИЯ ЭЛЕМЕНТОВ

5.1. Минимальные размеры сечения железобетонных элементов с жесткой арматурой, определяемые из расчета по действующим усилиям и соответствующим предельным состояниям, рекомендуется назначать с учетом экономических требований, унификации опалубки и армирования, а также технологии изготовления конструкций.

5.2. Принятые размеры сечения железобетонных элементов должны обеспечивать соблюдение требований по расположению арматуры в сечении (в части защитных слоев и т.п.) и по анкеровке арматуры.

5.3. Размеры сечений сжатых железобетонных элементов с жесткой арматуры рекомендуется принимать такими, чтобы их гибкость в любом направлении не превышала 80.

Минимальную толщину монолитных плит следует принимать в соответствии с главой СНиП II-21-75.

ЗАЩИТНЫЙ СЛОЙ БЕТОНА

5.4. Толщина защитного слоя для жесткой арматуры должна быть не менее 50 мм.

5.5. Для конструкций, работающих в агрессивных средах, толщину защитного слоя следует назначать с учетом требований главы СНиП II-28-73 «Защита строительных конструкций от коррозии».

При назначении толщины защитного слоя бетона следует также учитывать требования главы СНиП II-А.5-70 «Противопожарные нормы проектирования зданий и сооружений».

РАССТОЯНИЯ МЕЖДУ ОТДЕЛЬНЫМИ ВЕТВЯМИ ЖЕСТКОЙ АРМАТУРЫ И ОТДЕЛЬНЫМИ СТЕРЖНЯМИ ГИБКОЙ АРМАТУРЫ

5.6. Расстояния в свету между отдельными ветвями жесткой арматуры и между отдельными стержнями гибкой арматуры назначаются с учетом удобства укладки и уплотнения бетонной смеси.

5.7. При армировании двумя швеллерами, обращенными стенками друг к другу, расстояние между последними рекомендуется принимать не менее 80 мм. При армировании двумя двутаврами или двумя швеллерами, обращенными друг к другу полками, зазор между полками рекомендуется принимать не менее 50 мм.

Расстояния в свету между гибкими стержнями следует принимать в соответствии с указаниями главы СНиП II-21-75.

Если гибкая арматура не приваривается к жесткой, то расстояние между ними принимается как расстояние между гибкими стержнями в соответствии с требованиями главы СНиП II-21-75.

ПРОДОЛЬНОЕ АРМИРОВАНИЕ ЭЛЕМЕНТОВ

5.8. Наибольший процент армирования колонн продольной жесткой и гибкой арматурой рекомендуется не более 15, за исключением ядрового армирования, где процент армирования рекомендуется не более 25.

5.9. При выборе типа жесткой арматуры рекомендуется ориентироваться на более полное использование в работе ее сечения.

Жесткую арматуру типа сердечник, крестового и крестово-диагонального и коробчатого сечения рекомендуется применять при малых эксцентриситетах с соблюдением рекомендаций п. 3.31 настоящего Руководства.

5.10. Гибкую продольную арматуру следует устанавливать во всех случаях.

Диаметр продольных гибких рабочих стержней сжатых элементов монолитных конструкций должен быть не менее 12 мм, и, как правило, не более 40 мм. Должны соблюдаться и другие требования к продольной гибкой арматуре, приведенные в главе СНиП II-21-75.

ПОПЕРЕЧНОЕ АРМИРОВАНИЕ ЭЛЕМЕНТОВ

5.11. Поперечная гибкая арматура должна устанавливаться либо по расчету в соответствии п.п. 3.15 - 3.23 настоящего Руководства, либо согласно конструктивным требованиям, приведенным в главе СНиП II-21-75. Кроме того, в сжатых элементах диаметр хомутов рекомендуется принимать не менее 8 мм и приваривать их к продольной гибкой арматуре с шагом не более половины меньшего размера сечения, но не более 200 мм.

5.12. Анкеровка жесткой арматуры ригеля обеспечивается либо жестким присоединением ее к жесткой арматуре колонн, либо устройством специальной анкеровки на свободных концах ригеля. Специальная анкеровка жесткой арматуры ригеля осуществляется приваркой к верхней полке профилей анкеров на участке от торца жесткой арматуры до места пересечения верхней полки с расчетным наклонным сечением.

Анкеровку можно применять из арматурных стержней, приваренных к жесткой арматуре втавр или внахлестку или из уголков, пластин, подкрепленных ребрами жесткости (жесткий упор). Возможно также сочетание анкерных стержней, приваренных втавр с жесткими упорами.

Конструктивные требования к анкерам из арматурных стержней аналогичны требованиям к анкерам закладных деталей, приведенных в главе СНиП II-21-75.

Конструкция жестких упоров должна обладать достаточной жесткостью для равномерной передачи сжимающих усилий на бетон. Расстояния в свету между жесткими упорами на уровне площадки смятия бетона должны быть не менее 3,5-кратной расчетной высоты этой площадки. Конструкции жестких упоров можно применять различных видов, но площадка смятия бетона упором не должна иметь выступов, способствующих раскалыванию бетона. Общая высота стальной балки с жесткими упорами должна быть не менее 2 /3 высоты сечения железобетонной балки.

5.13. Анкеровка гибкой арматуры должна приниматься согласно указаниям главы СНиП II-21-75.

Рис. 21. Стык железобетонных колонн с жесткой арматурой типа сердечник

1 - полуавтоматическая сварка гибкой арматуры; 2 - жесткая арматура типа сердечник; 3 - линия пристрожки; 4 - срез для сварки торцовых листов; 5 - монтажная сварка

Рис. 22. Стык ригеля с железобетонной колонной с жесткой арматурой

1 - жесткая арматура типа сердечник; 2 - стальная накладка; 3 - ригель; 4 - монтажная сварка

5.14. Стыки жесткой арматуры должны обеспечивать передачу расчетных усилий в местах соединения элементов.

Конструкция соединения элементов жесткой арматуры между собой выполняется в соответствии с требованиями, предъявляемыми к соединениям металлических конструкций с учетом технологии обетонирования.

5.15. Стыки гибкой арматуры должны приниматься в соответствии с указаниями главы СНиП II-21-75.

5.16. Стык железобетонных колонн с жесткой арматурой типа сердечник и стык сборного ригеля с колонной рекомендуется выполнять в соответствии с рис. 21 и 22.

Основные буквенные обозначения. 1

1. Основные положения. 3

3. Расчет по прочности железобетонных элементов с жесткой арматурой. 4

4. Расчет изгибаемых железобетонных элементов с жесткой арматурой по предельным состояниям второй группы. 39

5. Конструктивные требования. 46